Thin Cu(InGa)Se₂ Solar Cells

Bill Shafarman Institute of Energy Conversion

Outline

- A. Introduction: What is "thin"?
- B. Review experimental results in literature
- C. IEC results: compare etched and thin deposited films
- D. Back contact
- E. Light trapping

Introduction

What is "thin"? Consider relevant lengths:

- Typical absorber layer thickness (d)
 - > 1.5 3 µm in laboratory cells
 - \geq 1.2 1.5 µm in production modules
- Electronic lengths
 - Minority carrier diffusion length 0.1 < L < 1 μm</p>
 - > Space charge width $w \le 0.5 \mu m$
- Optical absorption depth depends on wavelength
- □ So, let's say
 "Thin" means < 1 µm,
 Goal could be 0.5 µm

Review Laboratory Cell Results

- 1. Bi-layer evaporation (Cu-rich / Cu-free) IEC Shafarman, et.al. *Proc, 26th IEEE PVSC,* 331 (1996)
 - Uniform bandgap through film
- 2. Three-stage evaporation Matsushita Negami, et.al. *Proc.2nd WCPEC*, 1181 (1998)
 - ☐ Ga gradient from back to front, large grain size
- 3. Simulated in-line evaporation ÅSC (Uppsala) Lundberg, et.al. *Prog. Photov.* **11**, 77 (2003)

Review Laboratory Cell Results

Review Laboratory Cell Results

General trends and observations

- Both IEC and Matsushita results limited by shunting of cells for $d \le 1 \mu m$ need to control film roughness?
- ☐ Decrease in J_{SC}
 - \triangleright expected for d < 1 µm due to incomplete absorption Gloeckler and Sites, *J. Appl. Phys.* **98**, 103713 (2005)

ÅSC Results

Compare films with:

- uniform bandgap through-film
- CuGaSe₂ layer at back of film to provide a back surface field (BSF)
 - provide barrier to electrons, reduce recombination at back contact

Cell Results: ASC - J_{SC}

 J_{SC} decrease with reduced thickness

- $\hfill \square$ With d < 1 μm J_{SC} decrease is greater than predicted by model based on optical absorption
- No improvement with high Ga BSF

Cell Results: ASC - J_{SC}

Calculated loss in J_{SC}

□ Compare calculated QE based on optical absorption (solid) and the measured QE for Cu(InGa)Se₂ thicknesses of 1.8, 0.8 and 0.36 mm

Cell Results: ASC

The other J-V parameters

- ightharpoonup V_{OC} decrease for d < 0.5 μ m
 - higher with BSF at all thicknesses
- \square FF decrease for d < 1 μ m
 - ➤ for d< 0.5 µm with BSF
 - field aided collection?
- $\ \square\ \eta$ decreases for d < 1 μ m but BSF improves η at all thicknesses

Shell Solar Results

Baseline process

- Deposition by reaction of metal precursor films
- Baseline thickness ≈ 1.2 μm
- Unpublished results, provided by Dale Tarrant

Shell Solar Results

High yield manufacturing process ⇒ behavior is comparable to results with evaporated films

- \square J_{SC} decrease for d \le 1 μ m
- ightharpoonup V_{OC} decrease at d = 0.6 μm , note Ga gradient \sim BSF
- FF independent of d

New IEC results

Evaporated Cu(InGa)Se₂

- Uniform layer deposition
 - ➤ easily scalable: thickness

 time
 - through-film composition is constant (AES)
 - ➤ more dense films ⇒ minimize shunt formation?
- Etched films
 - > smoothing etch starting from 2 µm thick baseline films
 - very smooth, specular surface
 - controlled reduction in thickness
 - > potential to better quantify optical losses

CIGS morphology

TEM images show voids in films grown with 2-step process but not in films grown with uniform evaporation.

Lei, Rockett and Robertson, Univ. of Illinois

Are voids cause of shunts in thin layers?

Uniform growth (no Cu-rich stage)

Cu(InGa)Se₂ Etch

- Aqueous Br-etch smoothes Cu(InGa)Se₂ surface
 Birkmire, McCandless, *Appl. Phys. Lett.* **53**, 140 (1988)
- □ Residual Se on surface must be removed to make devices Canava, et.al. J. Phys. Chem. Sol. 64, 1791, (2003)
 - KCN etch
 - vacuum anneal (250°C, 10 min)
- □ Characterize roughness by surface area difference $\Delta A_{surf} = (A_{surf} - A_{im})/A_{im}$

Cu(InGa)Se ₂	ΔA_{surf}
As-deposited (550°C)	19 %
Br-etch	3 %
KCN etch	1 %

- Use etch to:
 - Smooth surface used for optical characterization of Cu(InGa)Se₂ and buffer layers
 - Controlled reduction in Cu(InGa)Se₂ thickness

Cu(InGa)Se₂ Etch

Thickness measurement

Determine thickness from interference fringes in reflection spectrum Swanepoel, J. Phys. E 16, 1214 (1983)

 \square Need n vs. λ Paulson, et.al., J. Appl. Phys. **94**, 879 (2003)

$$2nd = m\lambda$$

$$d = \frac{\lambda_1 \lambda_2}{2(\lambda_1 n_2 - \lambda_2 n_1)}$$

Minima							
λ1	n1	λ2	n2	λ3	n3	d1	d2
1057	3.032	1187	2.92	1380	2.863	1224	1298
Maxima					•		
λ1	n1	λ2	n2	λ3	n3	d1	d2
1025	3.055	1130	3.054	1283	2.884	1800	1099

d avg 1355 stdev 307

	λ	n	m(est)	m(exact)	d new
	1025	3.055	8.1	8	1342
Maxima	1130	3.054	7.2	7	1295
	1283	2.884	6.1	6	1335
	1057	3.032	7.6	7.5	1307
Minima	1187	2.92	6.7	6.5	1321
	1380	2.863	5.6	5.5	1326
				d avg	1321
				stdev	17

Cu(InGa)Se₂ Reflection

Effect of etch

- $lue{}$ higher R in absorbing region \Rightarrow lower J_{SC} in devices
- greater interference effect due to specular surface

Cell results: deposition time vs. etch

Cell results: deposition time vs. etch

Cell results: shunting

Thickness varied with deposition time of uniform process

- ☐ For each time: 12 cells, 0.5 cm²
- Yield reduced with thinnest layers due to shunts

d (µm)	Cells	η (%)	V _{OC} (V)	J _{SC} (mA/cm ²)	FF (%)	G_{SC} (mS/cm ²)
1.90	best	15.4	0.634	32.1	75.7	0
1.30	average*	14.3	0.628	31.5	72.1	2
0.92	best	14.0	0.647	28.7	75.2	0
0.92	average*	12.9	0.640	28.3	71.1	1
0.70	best	13.3	0.661	27.0	74.6	1
0.70	average*	12.5	0.663	26.2	72.0	1
0.63	best	11.8	0.633	26.6	70.1	1
0.03	average*	9.8	0.617	<i>25.3</i>	62.8	3
0.30	best	7.0	0.612	18.7	60.9	3
	average*	3.9	0.5	18.6	41.5	25

^{*} out of 12 cells on 2 pieces

$$G_{SC} = dJ/dV(V=0)$$

Cell results: deposition time vs. etch

- Loss of J_{SC} with decreasing d similar to previous results
- \square Scatter in V_{OC} , apparent decrease only for d < 0.5 μ m
- High FF \sim 75% at d = 0.43 µm with etched cells
 - > all other cells without BSF showed decreasing FF
- Uniform process, dense films may reduce shunting

Discussion of cell results

Loss of J_{SC} always greater than predicted from optical absorption.

What are possible causes?

- Incomplete current collection
 - may be due to poor material quality at back of Cu(InGa)Se₂
 - but high FF suggests that collection is not the problem
- Reflection loss at back contact
 - \triangleright but Gloekler and Sites model didn't fit data even with $R_b = 0$
- Recombination at back surface
 - but BSF didn't increase current
- Are the models missing something?

And what are paths for improvement?

- More reflective back contact.
- Light scattering to increase optical path length in absorber

Discussion of cell results (cont.)

FF and Voc

- □ In best cases, constant for $d \ge 0.4 \mu m$
 - ASC cells with BSF, IEC cells with etched Cu(InGa)Se₂
- Effect of back surface recombination,
 - > role of back surface field is not clear

Alternative metals can provide improved reflection

- Selection criteria:
 - > low cost
 - expected high reflection
 - tolerance to Se reaction rules out Ag or Al
- Experimental comparison of W, Ta, Nb, and Mo Orgassa, et.al. Thin Sol Films 431, 387 (2003)
 - expected improvement in J_{SC} for Nb, Ta not obtained
 - varying surface roughness effects comparison
 - > also tried Cr, V, Ti, and Mn but films reacted with Se
 - > Good cell performance with W and Ta
 - back surface field (Ga gradient) needed for Ta, Nb

Results from Orgassa et.al.

Metal	Мо	W	Ta	Nb	Cr
η (%)	13.8	14.2	13.3	10.0	5.9

Other back contacts: TiN and ZrN

- Stable in high temperature Se environment
- □ Calculated reflection at Cu(InGa)Se₂/contact interface Malmström, et.al. *Appl. Phys. Lett.* **85**, 2634 (2004)

- ☐ TiN cell results Malmström, et.al. 3rd WCPEC, 344 (2003)
 - $> \eta \approx 13\%$ using 0.5 μ m Cu(InGa)Se₂
- ZrN cell results with 0.6 μm Cu(InGa)Se₂
 - ➤ Low V_{OC} and FF with Mo/ZrN contact
 - ➤ Improved V_{OC} with Ga gradient or MoSe₂ layer
 - > Small increase in long wavelength QE

Back contact	η	V _{OC}	J_{SC}	FF
	(%)	(V)	(mA/cm2)	(%)
Мо	9.7	0.535	25.0	72.5
Mo/ZrN	7.2	0.456	24.9	62.8
Mo/Ga grade	11.4	0.637	25.5	70.9
Mo/ZrN/Ga grade	10.2	0.572	26.9	66.0
Mo/MoSe ₂	9.2	0.518	25.5	69.8
Mo/ZrN/MoSe ₂	10.4	0.580	25.4	70.5

ZrN Contact

With Ga gradient in Cu(InGa)Se₂

With MoSe₂ layer

Malmström, et.al. *Appl. Phys. Lett.* **85**, 2634 (2004)

Understanding the Back Contact

- With Mo can assume that MoSe₂ layer is always formed Wada, et.al., *Jap. J. Appl. Phys* **35**, L1253 (1996)
- Back surface field formed by high Ga layer
 - \triangleright not necessary to maintain V_{OC} with Mo contact
 - > increases V_{OC} with alternate contacts
- MoSe₂ layer increases V_{OC} with ZrN contact
- Suggest that MoSe₂ forms BSF
 - $\triangleright E_q(MoSe_2) = 1.4 \text{ eV}$
 - > suggested by Rau and Schock

i-ZnO Mo

Ou(In,Ga)Se2

MoSe₂

Rau and Schock, in <u>Clean</u> <u>Electricity from Photovoltaics</u>, ed. M. D. Archer and R. Hill, (2001)

Light Trapping

Used extensively in a-Si solar cells

- Best cells use combination of back reflector and optimized light scattering to increase optical path length
 - ZnO/Ag or ZnO/Al reflector
 - Textured ZnO or SnO₂
- Detailed optical models have been developed

Lablanc et.al. *J. Appl Phys* 75, 1074 (1994). Hishikawa et.al. *Sol. Energy Sol. Cell Mat.* 49,143 (1997) Hegedus and Kaplan, *Prog in Photov.* 10, 257 (2002).

Light Trapping in Cu(InGa)Se₂

Can provide texture at top or bottom of cell

- Textured substrate, e.g. metal foil or textured film on substrate
 - > assess conformality of subsequent layers
- Textured ZnO or ITO

Light Trapping in Cu(InGa)Se₂

Models of effect of light scattering in Cu(InGa)Se₂ cells

- □ Increase in J_{SC} calculated for Ag reflector with 0.5 µm absorber Malmström, et.al. *3rd WCPEC*, 344 (2003)
 - > 2.0 mA/cm² with specular surfaces
 - > 3.5 mA/cm² with scattering surfaces
- Effect of measured Cu(InGa)Se₂ surface roughness

Krc et.al., 20th EuroPSEC, 1831 (2005)

Not enough to fit measured QE

absorber

window

back contact

Conclusion: Some Critical Questions

- \square Why is J_{SC} so low?
 - Do we need better optical models?
 - ➤ Is there a confirmation of improved J_{SC} (and long λ QE) with a better back reflector?
- What is the role of the MoSe₂ layer in creating a back surface field and in optical reflection?
 - band alignments between Mo/MoSe₂/Cu(InGa)Se₂
- Does film growth need to be optimized for thin layers:
 - control morphology with changing d
 - may be tradeoff between texture for light scattering and shunting
 - control nucleation to ensure quality material at back
- Best designs for back contact, BSF, light scattering

